我们研究了与给定的无向图$ g $相对应的图形模型的最大似然估计的问题。我们表明,最大似然估计(MLE)是几个帐篷函数的指数的乘积,每个最大集团的$ g $。虽然图形模型中的一组对数符号密度是无限维度的,但我们的结果表明,可以通过求解有限维凸优化问题来找到MLE。我们提供实施和一些示例。此外,我们证明MLE存在并且具有概率为1,只要样品数量大于$ g $ chordal时最大的$ g $集团的大小。我们证明,当图$ g $是集团的不交联时,MLE是一致的。最后,我们讨论了$ g $的图形模型中的对数 - 串联密度在$ g $中具有对数符号分解的条件。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
可重复性是科学的基石,因为发现的复制是它们成为知识的过程。人们普遍认为,许多科学领域正在经历可重复性危机。这导致了各种准则的出版物,以提高研究可重复性。该教学章节旨在作为医学成像机器学习领域的研究人员的可重复性介绍。我们首先区分不同类型的可重复性。对于每个人,我们旨在定义它,描述实现它的要求并讨论其效用。本章以讨论可重复性的好处的讨论以及对这种概念的非态度方法及其在研究实践中的实施的认罪。
translated by 谷歌翻译
使用深度学习技术,可以在MRI图像中自动检测到旁那鼻鼻窦系统中的异常,并可以根据其体积,形状和其他参数(例如局部对比度)进行进一步分析和分类。但是,由于培训数据有限,传统的监督学习方法通​​常无法概括。现有的旁那间异常分类中的深度学习方法最多可诊断出一种异常。在我们的工作中,我们考虑三个异常。具体而言,我们采用3D CNN来分离上颌鼻窦体积,而没有异常的鼻窦体积,并具有异常。为了从一个小标记的数据集中学习强大的表示形式,我们提出了一种新颖的学习范式,结合了对比损失和跨内向损失。特别是,我们使用有监督的对比损失,鼓励有或没有异常的上颌窦量的嵌入来形成两个不同的簇,而跨层损失则鼓励3D CNN保持其歧视能力。我们报告说,两种损失的优化是有利的,而不是仅通过一次损失而优化。我们还发现我们的培训策略会提高标签效率。使用我们的方法,3D CNN分类器的AUROC为0.85,而用横向渗透损失优化的3D CNN分类器可实现0.66的AUROC。
translated by 谷歌翻译
背景:了解OMICS与表型之间的关系是精确医学中的一个核心问题。代谢组学数据的高维度挑战学习算法在可伸缩性和概括方面。大多数学习算法都不产生可解释的模型 - 方法:我们根据决策规则的结合或分离提出了一种集合学习算法。 - 结果:代谢组学数据的应用显示,它会产生可实现高预测性能的模型。模型的解释性使它们可用于生物标志物发现和高维数据中的模式发现。
translated by 谷歌翻译
在本文中,我们提出了一种新方法,以可靠的方式使用基于几何的变异自动编码器以可靠的方式执行数据增强。我们的方法结合了VAE被视为Riemannian歧管的适当潜在空间建模和新一代方案,该方案产生了更有意义的样本,尤其是在小型数据集的背景下。该方法通过广泛的实验研究进行了测试,在该研究中,其对数据集,分类器和训练样品的稳健性受到了强调。还可以在充满挑战的ADNI数据库上进行医学成像分类任务进行验证,其中使用拟议的VAE框架考虑了少量的3D脑MRIS并增强。在每种情况下,所提出的方法都可以在分类指标中获得显着可靠的增益。例如,在最先进的CNN分类器中,经过50次认知正常(CN)和50例阿尔茨海默氏病(AD)患者的最先进的CNN分类器,平衡准确度从66.3%跃升至74.3%,从77.7%到86.3%。具有243 CN和210 AD,同时提高了极大的敏感性和特异性指标。
translated by 谷歌翻译